

The University of Jordan School of Engineering Chemical Engineering Department

0915351 Materials Science and Engineering Semester /

Course Catalog

3 Credit hours. All engineering structures and devices utilize materials which have been selected based on theirproperties. These properties along with design considerations enable a desired performance level. Therefore, engineers of every type are well served in their careers by an understanding of thescientific foundations of materials that govern these properties. Accordingly: This course is designed to provide an introduction to engineering materials with an emphasis on how atomic and molecularbonding, structure, composition and processing influence material properties.

Instructor		
Instructor	Dr. Yousef Mubarak	Office: CHE 3 rd Floor Office 315 Tel: 22891
	E-mail: ymubarak@ju.edu.jo	Web: http://eacademic.ju.edu.jo/ymubarak/default.aspx

Prerequisites		
Prerequisites by topic	Principles II	
Prerequisites by course	0905212	

	Text book
Title	Materials Science and Engineering
Author(s)	William D. Callister
Publisher	John Wiley & Sons
Year	2010
Edition	8 th Edition

	References
Books	1. Ashby, M. F. and Jones, D. R. H., "Engineering Materials: an Introduction to their Properties
	and Applications", 1st Edn., Pergamon Press, 1980.
	2. Deighton, M., Mead, J. A., "Introduction to Materials Science", Oxford U. P., 1978.
	3. Brick, R. M., Pense, A. W., and Gordon, R. B., "Structure and Properties of Engineering
	<i>Materials</i> ", 4th Edn., McGraw-Hill, 1977.
	4. Budworth, D. W., "Intorudction to Ceramic Science", Pergamon Press, 1970.
	5. Van, V. and Lawrence, H., "Materials Science for Engineers", Addison-Wesley, 1970.
	6. Raghavan, V., "Materials Science and Engineering: a First Course", 2nd Edn., Prentice-Hall,
	1982.
	7. Van, V. and Lawrence, H., "Elements of Materials Science and Engineering", 6th Edn.,
	Addison-Wesley, 1989.
	8. Shackelford, J. F., "Introduction to Materials Science for Engineers", 4th Edn., Prentice-Hall
	International, 1998.
	9. Smith, W. F., "Principles of Materials Science and Engineering", 2nd Edn., McGraw-Hill,
	1990.
	10. Alper, Allen M., "Phase Diagrams: Materials Science and Technology", Academic Press,
	1970.

Objectives and Outcomes		
Objectives	Outcomes	
 To provide an understanding of the influence of bonding, nano- and micro- structure, composition and processing on the properties of materials. [1, 4] To provide students with an understanding of various types of materials, their ranges ofproperties, and how their properties can be tailored for engineering purposes. [1, 4] To provide the students with an understanding of the various advantages and disadvantagesoffered by specific classes of materials, and an awareness of the possible tradeoffs associated with optimization of a specific material's properties. [1,2] 	 Upon successful completion of the Introduction to Engineering Materials Science course, students should be able to: 1. Distinguish the different classes of engineering materials. [1] 2. Describe and comment on structure, processing and properties of the main classes of materials and the relationships between them. [1, 4] 3. Describe the structure and properties of a range of advanced materials. [1] 4. Describe processing-microstructure-property relationships. [1, 2] 5. Support their understanding of the above areas with quantitative analyses where appropriate. [1] 6. Demonstrate an awareness of the principles underpinning engineering design. [1,2] 	

Course Assessment: The assessment of objectives will be achieved through homework assignments, quizzes, and common examinations with common grading.

Evaluation			
Assessment Tool Expected Due Date		Weight	
Homework& Quizzes	One week after homework problems are assigned and there will be a quiz every week.	10 %	
First Exam	Later	20 %	
Second Exam	Later	20%	
Final Exam	According to the University final examination schedule	50 %	

	Topics Covered	
Week	Topics	Chepters in Text
1	Introduction	Chapter 1
	• Historical Perspective	
	 Materials Science and Engineering 	
	• Why Study Materials Science and Engineering	
	 Classification of Materials 	
	 Advanced Materials 	
	 Modern Materials Needs 	
2-3	Atomic Structure and Interatomic Bonding	Chapter 2
	• Introduction	
	• Atomic Structure	
	 Fundamental Concepts 	
	 Electrons in Atoms 	
	 The Periodic Table 	
	• Atomic Bonding in Solids	
	 Bonding Forces and Energies 	
	 Primary Interatomic Bonds 	
	 Secondary Bonding or van der Waals Bonding 	
	 Molecules 	
4-6	The Structure of Crystalline Solids	Chapter 3
	• Introduction	
	• Crystal Structure	
	 Fundamental Concepts 	
	 Unit Cells 	
	 Metallic Crystal Structures 	

	 Density Computations 	
	 Polymorphism and Allotropy 	
	 Crystal Systems 	
	Crystallographic Points	
	Crystallographic Directions	
	Crystallographic Directions	
	- Crystatiographic Flates	
	Linear and Planar Alomic Densities	
	 Close-Packed Crystal Structures 	
	 Crystalline and Noncrystalline Materials 	
	 Single Crystals 	
	 Polycrystalline Materials 	
	Anisotropy	
	 X-Ray Diffraction Determination of Crystalline Structure 	
	 Noncrystalline Solids 	
7	Imperfactions in Solids	Chapter/
,	Imperjections in Solids	Chapter+
	• Introduction	
	• Point Defects	
	 Vacancies and Self-Interstitials 	
	 Impurities in Solids 	
	 Discellanceous Imperfections 	
	 Dislocations—Linear Defects 	
	 Interfacial Defects 	
	 Bulk or Volume Defects 	
	 Atomic Vibrations 	
	Microscopia Examination	
	General	
	 General Microscomy 	
	Grain Size Determination	
8.0	Machanical Proportion of Metals	Chapter6
0-9	International Troperities of Metals	Chaptero
	Concentra of Stress and Stress	
	Concepts of stress and strain	
	• Elastic Deformation	
	 Stress—Strain Behavior 	
	Anelasticity	
	 Elastic Properties of Materials 	
	• Plastic Deformation	
	Tensile Properties	
	 True Stress and Strain 	
	 Elastic Recovery During Plastic Deformation 	
	 Compressive, Shear, and Torsional Deformation 	
	 Hardness 	
	 Departs Variablity and Design Safety Factors 	
	 Variability of Material Dueperties 	
	 Variability of Material Properties Design/Safety Factors 	
10	- Design/Sujery Fuciors	
10	<i>r</i> auure	Chapter 8
	• Introduction	
	o Fracture	
	 Fundamentals of Fracture 	
	 Ductile Fracture 	
	Brittle Fracture	
	 Principles of Fracture Mechanics 	
	Impact Fracture Testing	
	○ Fatique	
	Cyclic Stresses	
	• The S—N Curve	
	 Crack Initiation and Propagation 	
	Crack Propagation Rate	
	Factors That Affect Fations Life	
	Environmental Effects	
	- Environmental Effects	
	• Conordized Croop Delemier	
	Generalized Creep Benavior Stress and Terms englished Effects	
	Stress and Temperature Effects	

	 Data Extrapolation Methods Allows for High Tamparature Use 	
11-12	- Anoys for high-remperature Use	Chapter 9
11 12	Introduction	Chapter
	• Definitions and Basic Concepts	
	 Solubility Limit 	
	 Phases 	
	Microstructure	
	 Phase Equilibria 	
	 One-Component Phase Diagram 	
	• Binary Phase Diagrams	
	 Binary Isomorphous Systems 	
	 Binary Eutectic Systems 	
	• Equilibrium Diagrams Having Intermediate Phases or	
	Compounds	
	 Eutectoid and Peritectic Reactions 	
	 Congruent Phase Transformations 	
	 Ceramic and Ternary Phase Diagrams 	
	 The Gibbs Phase Rule 	
	• The Iron-Carbon System	
	• The Iron—Iron Carbide (Fe—Fe3C) Phase Diagram	
	• Development of Microstructures in Iron—Carbon Alloys	
10	The Influence of Other Alloying Elements	
13	Phase Transformations in Metals:	Chapter 10
	• Introduction	
	 Phase Transformation Basic Concents 	
	 Basic Concepts The Vinctics of Solid State Practices 	
	 The Kinetics of Solid-State Reactions Multiphase Transformations 	
	• Microstructural and Property Changes in Iron-Carbon Alloys	
	 Isothermal Transformation Diagrams 	
	 Continuous Cooling Transformation Diagrams 	
	 Mechanical Behavior of Iron—Carbon Allovs 	
	 Tempered Martensite 	
	 Review of Phase Transformations for Iron—Carbon Alloys 	
14	Thermal Processing of Metal Alloys	Chapter 11
	• Introduction	
	• Process Annealing	
	• Stress Relief	
	• Annealing of Ferrous Alloys	
	• Hardenability	
	 Influence of Quenching Mealum, Specimen Size, and Geometry Usert Transformed. 	
	• Heat Treatments	
	• Mechanism of Hardening • Miscellancous Considerations	
	o miscellaneous Considerations	
15	• Structures and Properties of Ceramics	Chapter 12
	• Introduction	
	• Ceramic Structure	
	 Crystal Structures 	
	Silicate Ceramics	
	 Carbon Lun orfa ations in Commission 	
	 Imperjections in Ceramics Caramia Phase Diagrams 	
	- Ceramic Frase Diagrams	
	Internation r topernes Rrittle Fracture of Coramics	
	Stress-Strain Rehavior	
	• Types and Applications of Caramies	
	 Glasses 	
	 Glass-Ceramics 	
	 Clay Products 	
	 Refractories 	
	 Abrasives 	

• Cements	
 Advanced Ceramics 	
• Fabrication and Processing of Ceramics	
• Fabrication and Processing of Glasses and Glass-Ceramics	
 Fabrication and Processing of Clay Products 	
 Powder Processing 	
• Tape Casting	

Relationship to Chemical Engineering Program Objectives

PEO1	PEO2	PEO3	PEO 4	PEO 5	PEO 6
\checkmark	\checkmark				

Document control

Prepared by	Dr. Yousef Mubarak
Last Modified	March 9, 2021